If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8t^2+40t+5=0
a = -8; b = 40; c = +5;
Δ = b2-4ac
Δ = 402-4·(-8)·5
Δ = 1760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1760}=\sqrt{16*110}=\sqrt{16}*\sqrt{110}=4\sqrt{110}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{110}}{2*-8}=\frac{-40-4\sqrt{110}}{-16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{110}}{2*-8}=\frac{-40+4\sqrt{110}}{-16} $
| 10x+6=2(8x-6) | | X/2-x/6+5=x+5 | | 3h,h=1/6 | | 12p=600 | | 5x+25=2x+13 | | -0.4x+3=66x+33 | | 5x=25=2x=13 | | -17g-g=16 | | 12-5(3y+6)=8 | | 2(x-1)=3x-2(1-x) | | |2x-7|=7 | | 5.8x-11.6=23.2 | | 18=2(h-8) | | -39+8x=1-8(1+3x) | | -9x4=81 | | -3(t+2)=-5(t+4)+5 | | 5(2z–3)–3z=3(z+3) | | 1/2(4x-10+5=x-11 | | X17x-11=-96 | | -8(b+6)=2b-38 | | 18+2k=-8(5k+3) | | (4+i)(4-i)=0 | | 15x+24=16x | | 6x+11-7x+143=180 | | 9x-(6x+9)=8x-44 | | 2x=300+500 | | 12=2(u-13) | | 3r-1=1 | | 2x-29=23 | | 8(1/6x)+x+1/6x=15/3 | | -40+8x=7(6x+5)-7 | | 12=2(u=13) |